#八百回合經濟談
〔 #要相信直覺還是機率? #願機會永遠對你有利 〕
▌願機會永遠對你有利!
假設超商推出了一個抽抽樂小遊戲,獎品是當次消費免費。
在結帳的時候,螢幕會出現A、B、C三個選項,只有其中一個是免費,其他兩個都是謝謝惠顧請支付全額。
當壯士選了A,螢幕會告訴你B、C選項中為謝謝惠顧的其中一個。此時,你可以決定要不要更換選項。
那麼今天壯士選了某個選項,螢幕顯示另一個是謝謝惠顧,你會換成第三個選項嗎?
▌經典的三囚問題
在告訴壯士們前述情境的解答之前,我們先介紹一下這個經典的三囚問題!
在古代的監獄裡有甲、乙、丙三個死刑犯,新皇帝在他上任那天打算特赦其中一位。
他把決定要特赦的那個人告訴獄卒,並交代他不可以明確地告訴犯人他到底會不會被特赦,否則第一個被解決的就會是獄卒本人。
甲聽到這個消息,很興奮地跑去問獄卒他有沒有被特赦,獄卒只回答:「乙沒有。」
聽完這個消息之後甲非常開心,他覺得他活下來的機率從1/3變成了1/2。
當他跑去跟隔壁房超聰明的政治犯丁說這件事之後,丁卻潑他冷水說:「沒有哦,你還是只有1/3的機會。」
▌到底誰對誰錯?
甲這時候就很焦慮,獄卒不會說謊的呀,丁又那麼聰明不會騙他,到底發生什麼事?
這時候可以確定的是:乙沒有被特赦。而在這件事的前提之下,會有兩種情況:
甲真的被赦免了,獄卒在乙丙之間隨便挑一個講,而這個情況出現的機率是1/3 X 1/2 = 1/6。
甲沒有被赦免,獄卒這時候不能說丙被赦免了,因此沒得選只能說乙沒有,這個情況出現的機率是1/3 X 1 = 1/3。
聰明的壯士就可以發現,這時候甲確實被赦免的機率跟沒有被赦免的機率的比例是1 : 2,所以甲被赦免的機率其實就是1/3!跟甲的直覺完全不一樣!
▌蒙提霍爾問題
回到最一開始超商的情況,假設A是免費,B和C是謝謝惠顧。
如果沒有換的話,表示說螢幕有沒有顯示其實沒差,一開始就選中免費的機率是1/3。
如果換了的話,會有三種情況:
1️⃣換失敗,表示原本就選中A
2️⃣換成功,因為原本選B,電腦螢幕只能顯示C是謝謝惠顧。
3️⃣換成功,因為原本選C,電腦螢幕只能顯示B是謝謝惠顧。
所以我們可以得知,更換選項免費的機會是2/3,而沒有換免費的機會是1/3,更換選項這個非直覺的做法居然可以提升中獎機會!
▌小結
今天向壯士們介紹賽局理論中很有趣的蒙提霍爾問題,是來自美國電視節目的遊戲呦!
以後做決定的時候不妨多想一想,看看你會選擇相信直覺還是機率呢?
✨不要滑掉!後面還有一個小彩蛋送給大家!✨
▌睡美人問題
睡美人會在星期天晚上睡著,而她在睡前會被告知說:她睡著之後會由硬幣來決定要在星期一還是星期二叫她起床。
如果是正面,就只會在星期一叫她;如果是反面,則兩天都會叫她。
但不管怎樣,她在睡前都會喝下孟婆湯,把所有記憶清除。
請問壯士們,睡美人醒來的時候她覺得硬幣是正面的可能性有多大?在底下留言告訴我們你的答案🥰🥰